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Correlation Functions of Infinite System of 
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The time-dependent correlation functions of infinite nonequilibrium systems of 
interacting diffusing particles are obtained in the thermodynamic limit in the 
case when the initial correlation functions coincide with the equilibrium correla- 
tion functions of the Gibbs system in an external field. 
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1. I N T R O D U C T I O N  

Evolut ion of Brownian particles interact ing via a pair  potent ia l  q~ m a y  be 
described by  a gradient  system of stochastic differential  equations 

dxj(t) = ~ ( V 0 ) ( x i -  xj) + fl - ' /2  dwj(t) (1.1) 
i = l  
i~-j 

where xj(t) is a three-dimensional  posit ion vector  of a particle labeled by  j ,  
{wj(t)}]= 1 is a sequence of independent  d-dimensional  Wiener  processes, 
and  fl is the inverse temperature ,  

O0(x) ( ~q~(x) ~e~(x) ~ep(x) ) 
( % ) ( x ) -  Uxx - 0--x i ' Ox---7 ' Ox - 7  

The  solution of (1.1) can be ob ta ined  for bounded  smooth  potent ial  by  
s tandard  methods  of probabi l i ty  theory. 
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An important problem of statistical mechanics of nonequilibrium 
systems is to construct solutions of (1.1) in the limit of an infinite system 
(n ---) m). 

The first results concerning the problem was obtained by R. Lahg (1) 
for smooth, short-range potentials. 

Evolution of n-particle system of interacting Brownian particles can 
also be described by the Smoluchowski equation which is the forward 
Kolmogorov equation for (1.1) for the probability density 

aoo(~, , . . . ,x~ = z,4" a ~ ' ,  aoo(~, . . . . .  xo,O 
at ~ l axj j~ l  

+ Oo(~, . . . .  , ~,t)  _X (v~)(~- xj) I ,= 
i~j 

(1.2) 

This equation approximates evolution of a mechanical system of two 
kinds of particles. (3) A discussion of rigorous results concerning the diffu- 
sion approximations can be found in Refs. 4 and 5. 

To evolution of an infinite system there corresponds a hierarchy of 
equations for correlation functions 

a p ( x ~ ,  . . . , x , ~ , t )  

at  

"t- 100(Xl ,X m ,t) Z (V~})(Xi- Xj) 
i=1 
i~j 

+f~3(v~)(xj- xm+,lo(x, . . . . .  xm+l,0dx.,+,} (1.3) 

The hierarchy plays the role of the forward Kolmogorov equation for 
the infinite stochastic gradient system and it was derived in Ref. 6 for 
thermodynamic limit of a sequence of canonical correlation functions. 

A natural candidate for a solution of (1.3) is thermodynamic limit of a 
sequence of grand canonical correlation functions pA(Xl . . . . .  X m , t  ) of a 
system enclosed in a eompact domain A. 
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These functions have the following representation: 

. . . .  , xm , , ) =  X:  A(2 xm+' ' " ,oA(xl 
n>~O 

(1.4) 

~A = ~ ~ f A o d x ,  " ' ' d X ~ O o ( X ,  , x n  ~ t ) 
n > > . O  " 

where Oo(Xl  . . . .  , x , ,  t )  is a bounded solution of (1.2) in E3,. 
To simplify the matter we do not demand that Oo(X~ . . . .  , x , , t )  

satisfies a b o u n d a r y  conditions at the boundary of A. 
In this paper we consider the problem of thermodynamic limit for the 

correlation functions OA(xn  . . . .  , X m,  t )  when initial correlation functions 
P0(Xl . . . . .  x,)  corresponds to the equilibrium state with a polynomially 
decreasing potential of(x) perturbed by an external field q0(x) (see also Ref. 
7). A similar problem was considered for one-dimensional mechanical 
systems in (8, 9). 

We obtain for OA(Xl . . . . .  Xm,  t) a series in powers of the activity ~ ,  
prove that the series converges in a domain independent of A and perform 
the thermodynamic limit (A ~ E3) in every order of the perturbation series. 

We start from a simple fact that (1.2) is connected with a heat 
equations, i.e., a parabolic equation whose right side contains a sum of 
derivatives of the second order (the 3n-dimensional Laplacian) and a 
multiplicative term which can be interpreted as a potential energy with a 
pair and a three-body potentials. T o  get a solution of (1.2) one has to 
multiply a solution of the heat equation by an exponent of minus one half a 
potential. 

It is known that the Cauchy problem for the heat equation is solved by 
the Feynman-Kac  formula. Since the initial distribution is taken by us to 
be a Gibbs distribution characterized by a pair potential and an external 
field we obtain a solution of (1.2) as an integral over the Wiener measure 
concentrated on path starting from (x~ . . . . .  x,) of an exponent of two 
terms. The first term has a structure of a potential energy with a pair 
potential and the second has a structure of a positive potential energy with 
a three-body potential. The potential is stable if both q~(x) and ( -Aq0(x  ) 
are stable. We assume that the last condition is satisfied. As a consequence 
we have 

Oo(X,,  . . . , x , , O  < ~ " ( t )  (1.5) 

As a next step we introduce a sequence of new three-dimensional paths and 
a complex pair potential representing an exponent of the three-body term 
as a characteristic functional of the Wiener measure concentrated on 
3n-dimensional paths starting from the origin. The obtained expression for 
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correlation functions resembles an expression for grand canonical density 
matrics of quantum systems. (m) By analogy with an algebraic tech- 
nique (l~ valid only for such systems with a pair potential we derive our 
perturbation series for correlation functions and obtain the necessary 
estimates. 

2. MAIN CONDITIONS AND FORMULATIONS OF THE RESULT 

We assume through our paper that the potential ~(x) satisfies the 
following conditions: 

(C.1) The function ~ is bounded and it has bounded partial deriva- 
tives up to the third order. 

(C.2) The functions 4~, -2xq satisfy the stability conditions 

, ( x / -  xj) > - a n ,  ~ ( - A , ) ( x , -  xi) >i - b n ,  ZX = V 2 
1 < i < j <  n 1 < i < j <  n 

(C.3) There exists a bounded, monotone, integrable in ~3 function 
w(Ix[) such that o~(Ixl) > (1 + [x[) -4 and 

I (x)l < c, (Ixl), I(Vr < c (Ixl), I X (x)l < co (Ixl) 
It is clear that (C.1) and (C.2) are satisfied if the Fourier transform 

~(k) of the function ~ is positive and it belongs to L2(R s, I kl s dk). 
We shall also consider the solutions of (1.2)that in the initial moment 

look like the following: 
(C.4) lo0(x I . . . . .  Xn ) = e x p ( _  f l U ( X l ,  . . . , xn  ) _/~Zj= lf~(x1) } ~ n  

where U ( x  I . . . . .  Xn) = ~l<i<j'<nr -- Xj) and the external field cp(x) is a 
bounded below measurable function: q0(x).> - % .  

Theorem.  If the potential q~ in (1.2) satisfies (C.1)-(C.3) and the 
initial distribution Oo satisfies (C.4), then there exist a bounded continuous 
function O t ( x l  . . . . .  x m ] X l , . . . ,  x;) and positive entire function k ( t )  such 
that k (  t )  > oe ,  

t - - > ~  

sup f lOt (x1  . . . .  , x m l x ]  . . . . .  x'~) I d x '  1 . . .  d x '  n 
xj  ~ R 3 ") ~3n 

< n! exp{(m + n ) k ( t ) }  (2.1) 

OA(x  . . . . .  Xm, t) 

2n+mfA =,~>o n! dx', . . .  dx'~&(x,  . . . .  , x,~] x ' , , . . . ,  xs (2.2) 

Corollary. The correlation f u n c t i o n  p A ( x  I . . . . .  Xm, t) is an analytic 
function of the activity in the domain [~[  < exp( - k(t)}. 
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The associated infinite volume correlation functions 

p(X, , . . . ,  xm,l ) -~- E ~ aN~3ndX'l''''' dxtnpt(x1 . . . . .  Xm[Xl . . . .  , X;) 
n>O 

(2.3) 

are analytic functions of the activity in the domain I ~]  < exp( - k(t)} 

3. CONSTRUCTION OF Ot(xt . . . . .  Xm[ X' ~ . . . . .  x'.) 

It can be easily checked that the function o(X., t) = exp{(fl/2)U(X.)} 
po(X.,  t) (by a capital letter indexed by n we denote an element of R 3") 
satisfies the heat equation 

at - a'  a / ( x o , t )  + v ( x . ) , , ( x . , t )  (3.1) 
1 

where 

1 2  

j = l  j = l  

3 0~ ~ ~ ~ (v+u) 2= E ~x; Ox; a+= E vj= ' 
v= 1 u= l  

The heat equation (3.1) is solved by the Feynman-Kac formula. Hence this 
formula permits to solve (1.2). 

proposition O.1). Let Px ( d Z )  be the Wiener measure on the space 
fa 3 of three-dimensional paths. If the potential satisfies (C.1) and the initial 
distribution P0 satisfies (C.4) then the unique solution to the classic Cauchy 
problem of the Smoluchowski equation (1.2) is given by 

P(Xn,t)= ens (dgn)exp{ -~Ut(xn,gn) - J~ k ~(,(J~-lt)) ) 
j = l  

(3.2) 
where 

G(x. ,z.)  = 

Px.(dzo)= [I 
j = l  

+,(x,- 5 ,z , -  zj) + (vju) (z.(~))& 
l <<.i<j<<.n j = l  

(3.3) 
3 

e~,(x,z)=�89 (-a+)(z(.))d~= E %(x,2) 
j = l  
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The "potential" ~t(x, z) satisfies the stability condition 

,t(xi- x j , z , -  zj) ~> -nB t ,  .~ = .  + t/?-~b (3.4) 
l<i<j<n 

From (3.4) we get (1.5). 

The last term at the right side of (3.3) has a three-body structure. Now 
let us transform the Gibbs factor containing this term as 

exp 4 j= 1 

= fa  ( i  j~f0,B -~ } P(dQ.)exp -~ fi =1 (VjU)(Z.(.c))dq~(r) 

where P (dQ.) -- I-I~= 1P (dqj) is the Wiener measure on f~3 concentrated on 
the paths starting from the origin, the differential dq(r) of the Wiener path 
q(.r) defines a stochastic measure. 

As a result we obtain for p0(X., t) the following representation: 

= "fa e (dZ. - 3 U , ( X o , Z .  P~ ~ 2. x. )P(dQ.)exp{ , Q.)) 

•  (3.5) 
j=l 

where 

Ut(Xn,Zn, Q . ) =  2 eOt(Xk-- Xj'Zk-- Zj]qk'qj) 
l<k<j~n 

i tB i 
O'(x 'z lq 'q ')=O~(x'z)  + -2 fo (VeO)(z('r))(dq(.c)- dq'(.r)) 

= Ot(x,z) + ~t,4(x,z [q,q'), 

(v,)(z(~))aq(~) = ~ "(~) 
e=l  

Now the correlation functions pA(Xm, t) look like 

[3A(Xm, t) = 5a2mPx.. (dZ m ) P (dQm)ptA(Zm, Zrn , Qm ) 
(3.6 t 

ptA(xm,zm, Qm)= ~'AI E n! ,, dXn (dZ; )P(dQ;)  
n>~O 

• exp ( - fl U(X m X~, Z m Zn, Qm Qs ) 

j = l  j = l  
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The function Oza(Xm,Z,,,, Q,,) has the structure of a grand canonical 
correlation function of a Gibbs system with a complex two-body potential. 

With the help of the standard algebraic technique we obtain for 
pA(x,,, t) a formal perturbation series (2.4) with ot(Xm I X,~) given by 

O,(XmJX;) = fa ,m+o (dZm)P(dQ,,)Pxx(dZ~)P(dQ~) 

• Q~Ix/,z~, Q~) 

• ~ep(z/(fi-'t))- fl ~ep(zj(fl-]t))), (3.7) 
j= l  j= l  

where o,(Xm, Z m, Qm I x~, Z', Q~) satisfies the relation 

Pt(Xm,Zm, QmlXs163 Qs 

=exp{ -flkq'(xj-xk'zj-zk]qk'%}k=, 
i ~ j  

X s K(Xj,Zj ,  g l  X~,} ,Z~,} ,O~,}) 
(s)eO,~) 

X ot(Xm(j)  X~s) ,Zm(j) Z{s  } , Q~(j~ Q~s}lX{,\s), Q~,\s)) 

Pt(Xm,Zm, QmleO)=exp{-fiU(Xm,Z~, Q~)) 
(3.8) 

The summation in (3.8) is performed over all subsequences {s) of the 
sequence ( 1 , . . . , n ) ,  {n\s}=(1,...,n)\{s}, rn(j)=(1,j- 1 , j +  1, 
. . . .  m), a capital letter indexed by {s} denotes a sequence of three- 

dimensional variables indexed by the elements of the sequence {s}, 

K(x,z, qlXA,Z/,, Q,~) = I~ (exp{-flq,t(x - xj,z - zjjq, q])} - 1) 
j= l  

Lemma. If the conditions (C.1), (C.2), (C.4) are satisfied then there 
holds the inequality 

sup ( .  o,(x, .  I x" ) 
x; ~ ~3 ~ ' ~  

< n! exp{4flBt + 2fl~o} ~ 2P+---~1 ( sup ( dXeK(Xelx ) 
e=0 (pt)2 ~xea~ja3 e 

(3.9) 
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n 

x ]exp{ - fl?(x - xj ,z - zjl q, qy)} - II 2 

Proof. Let us put 

f~ dX/'~.Px~ ' , IPtI.(Xm, Zm, Q.,) = ,~ (dZ.)  P (dQ.) 

• {o,(Xm,Zm, Q,.IX~,Z~, Q~)I, 

2 2 [O,l,,2(Xm,Zm, Qm [Xlk\m}) = ~_mPx~,m, (dZ{k\m})P(dQ{k\m}) 

x Io, l*.(x,,, zk ,  Qk ), k > m 

}}PtlI~.. = sup ( Px (dZm)P(dQm)iO,12.(Xm,Z,., Qm) 
x j  ~ ~3  Jf~3 m 

From (3.7) (C.4) and the Schwartz inequality it follows it is sufficient 
to prove the following inequality: 

2} m + n  

llptll2,n < n! exp{4B t k 2P+---~1 ( sup (" dX'KgX'[x)  (3.10) 
r=0 (p!)~ ~x~,~&~ P ' p 

To prove this inequality we utilize the geometric mean of (3.8) 

Pt(Xrn,Zrn, Qm{XA,Z~, Q/,) 

= exp{  - 2 / ~ ( X m  ,Z.., Q,.)) 

j = l  {s}C(t . . . . .  n) 

! ! X o,(X,,,(j)X{,} ,Zm(j)Z{s}, Q,,,(j)Q{,} [ 

l /m 
X~,\,}, Z{,\s}, Q{ n\,}) (3.1 1) 

We shall prove (3.10) with the help of induction. Assume, that (3.10) holds 
for m + n = k. Now we are going to prove that the same inequality holds 
f o r m + n = k + l .  
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By integrating (3.11) and applying the Holder and the Schwartz 
inequalities we get 

Io, l.(Xm ,zm, Qm) 

< exp{2flB, } 

n! • fi  p, (;-- 
j=l e=o 

• f j x ; f ~ P , ,  (dz;)e(de;)lu(x,,~, ~ I x;,z;, e;)f 

l/m 

x IO, I.-p(Xmu#;, ZmU~Z;' Qm(j) Qi ) ) 

<exp{2flB,)fi [ ~ n! s , j=, p=o p!(,Tz-p)! jx/K(xj,5,q~ x/) 

• IPL-.,~(Xmu~, Zmu~, Qmu~ IX/)) '/~ 

P 

/~(x,z, qlX/) = I I  X(x,z, qlX;) 
s = l  

K2(x,z, qfx)  = (  Px,(dz ')P(dq') lexp{-B~,(x - x',z - z' q,q')) - 112 aa~ 

From elementary inequalities it follows that 

Io?.(Xm ,Zm, Q,~) < exp{4flB, } 

j=l p=0 

l/m 

x Ip, l~-p,2(x..u), ZmU), Qm(j) IX/) 
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Applying once more the H61der and the Schwartz inequalities we obtain 
2 to, i. ,2(x=) 

I/m 
X l&I=-p,2(Xm(j), Z=(j), Q,,,(j) I X/) )]2 

• K(xj ,zj ,qjlX; )K( 5 ,zj ,qjlX;' 

• f.~(~ p,,o,,, (dz,.(j)) t, (dQ=(j~) 

• lo, l=_p.=(x,.(j), z=(j), Qm(i) IX/, ) 
1/= 

• 10,l.-p,2(Xm(j~, Z=(:), Q,,,(j) Ix;' ) 

< exp{ 4fiB, } f i  ~ p! (n - p)[ 6edX/, dXp' 
j = l  p=0 

• x;)  

• falP;, (dzj)e(dqj)KZ(xJ,zJ,qjl xi') 

• LI<= - ,, Px.w, (dZ=(j)) P (dQm(j)) 

2 X • lol,,-p,~( .,{:), Zm(j), Q=(/) IX; ) 

X ful' '-"Px' '  (dZm(j)) e (dQm(j)) 

X IoIZ_p,2(X=u) ,Zm(,), Q=(j) I XT ) } '/2} '/= 
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2(p+~)/2 )2 
e!(n -p)! exp{afiBt }(n[) 2 <~ 

p=0 
t 1/2 

• {sup2>dXe[fagPx(dZ)P(dq)K2(x,z,q[Xp) } 

O 2 • [I ,tl,-e,m+e-, 
Thus (3.10) holds for m + n = k if it holds for m + n = k + 1. 

4. MAIN ESTIMATES; DEFINITION OF K(t) 

Let us consider K(Xel x). From the HSlder inequality and the equality 

{ 4 ) 4  { 4 1 exp - f i ~ g , , j  = ~ ( e x p { - / ? ~ ) , j } - l ) e x p  - f l  ~ ~,k 
j=l j=l k=j+l 

we get [the functions ~tj are defined by (3.3) and (3.5)] 

) 4 
K(Xn]x ) < exp(n  I~]o + tlA~]o 2 1-'[ Kjl/3(X(,~} Ix), 

k {/71} ... (rt4} j=l 
u {,,j} =(1 . . . . .  n) 

(4.1) 

n 

Kj(X~[x)=s163 II 6 

(4.2) 

Proposi t ion (4.1). There exists a constant `00 > 1 such that 

K2(Xntx) < (  ~-fl C`ooexp{ ~-)~10 + ltt~-i})6n~(Xn-x ) 
(4.3) 

~(gn)  =~3e(dz ) f l  `06(Iz(/)~-l) - XJ I ) 
j=l  \ 2 

K3(X n Ix)~< (flc`00exp{ ,]A~blo + 1 t~ -1} )6nlsnj2(S n _ x) 
(4.4) 

....<d,, . . .d~~ rI ,~ - 51 
n!ao<. ,, aa3 j= l \ -2- ~ (X . )  

g4(gn[x) < 2(fl,~-6C`0oexp{ 1,t~-'})6nt2nlq3n~(Xn-x ) (4.5) 
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Proof, The inequalities (4.3) and (4.4) follow from (C.3) and the 
inequalities (4.6), 

lexp{x}-l[<lx[exp{Ix]}, (s163 

Applying the H61der inequality and the inequalities l exp { ix } - 11 < f2 Ix J, 
(a + b) n < 2n(a n + b n) we obtain 

n 
K4(X n x ) ~  1~6n( Px(dz) 1"I f~2 

j=l  (dzj) 

• {~2P(dq)P(dqj)ldPt,4(z-zjlq, qj)[6"} 1/~ 

n 
~< (2/8)6"2( Px(az) 1-I ;.3Pxa(dzj) 

Jf~ j = 1 

X 1 tg -' P(dq) -~ s (V , ) (z ( r )  - zj(r))dq(r) 

From the well-known formulas 

n 
;~2P(dq' ( s  t f(T) dq(q') )2n__ (2g/)'gl, ( s  tf2(T,dT ) 3 - ' n n < n ' <  n~ 

it follows that 
n 

K4(Xn ] x) ~ 21~6n123n36nt13n12n(""3 Px ( d2:)jI- I.= 1 ao(tfl-' dr 

• f~P~ (dzj) (Vc,)6([z(r) - zj(r)l ) 

To derive (4.5) it is sufficient to take into account the following inequality: 

f.3 P ( dz ) co 6( IZ ( [~ -1t) -- XI ) = 23 g tfl - ' (l y[)Oa 6(l y _ XI ) dy 

< exp {2tfi - ' }oa6~o6( ~-~ ) (4.6, 

Now let us prove (4.6). 
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The monotonicity of ~0(]xl) and exp{(-IxlZ/4t)fi ) with (C.4) gives 

(4~rt)-3/zf.3dyexp ( IX ~5 Yl /~ ) (,.d6(k))]) + 

-327 13 }fly,<.lxl/2 dy(4rrt) St 

p2 p 

• 
p E ~ t  ". 

<<.(l+l~olo217)6exp(2tfl-l}oa6(~ j- ) 

Proposition (4.2). There hold the inequalities 

SR3ndXn~zfl/6(Xn ) ~ (26[[w[[)ncooeXp { t--~}/~-t 

3dXn ~ l/6(X n ) ~ (21 IIo.)llO)o) t%2oeX p t T ' 

(4.7) 

I1<1 = s dx '41kl) 

( 4 . 8 )  

Proof. Let us make the change of a variable y - X .  = y '  in the 
expression for ~'-(X.) and split R3 into two domains [y] < IXn - X._l]/2 , 
[yJ > IX. - X._~]/2. In the first domain oa6([y - X._ 1 + X.I/2 ) < 
oa6(fX~-X._~]/4) and in the second domain ,~6(1y1 /2)  < ~ 6 ( I X  ~ - 
S._~l/4). 

Taking into account these inequalities 

~/~(Yn) ~ o96( ]In 4-Xn-�91 ){fly I +(.06// ]y] 
<<.lx.-x. ,1/2 ~'2-) 

n-j~ioa6( lY -  XJ + X"[ )ptB-'([y[) 
• 2 
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Integrating over N 3 and making an inverse change of a variable y + X, 
= y', we get 

~z'/-(Xn ) ~ 006( INn _4Yn--ll )(,~"(Xn_l)-{.- ~ f  (Xn_2,Xn ) ) 

This inequality and the inequality (4.6) give (4.7). 
Let us put now 

~n,p(Xk_l [ X) 

=n,s <.tfi-''' " f dr, ...dr,,exp(2(rn--rk_,)fl-* } 

dYk_ e.,([y,])~o6( lY - x,[ X s 1 , ' 2 ) 

( ) 
Applying the same argument as in the case of JU(X,) we obtain 

~(X~ ) <. ~,~&,,(X._, I X. ) 

~'@n.p(Xk-,[X)l~~176 - ,) 

+,o6( Ix~-4- x' )&,p+,(x~_~lx) } 

~g.r [ x) < ~o6exp{2tfi-2} (~o6( IX -- Xl[ 2p+= ) + ~o6( Ix-x,[_4 ) )  t" 

Hence 

fa,~ ) < Wos dXnS~nl.(6(Xn_l [Xn) 

<. 4%~ll,oll { 2' fu,,._, dX._ ,.~il(6( X._ 21X._ , ) 

-t" ffi~3(n_odXn_ ,~6(Xn_2 I Xn_ 1)} 
< 46~oo3]1~o112 { 2" 26s 2._@0.(6(X._, IX._ 3) 

+ 2'fa~, ~ j x .  _ 2 ~2,~6(x. - 3  ] Xn - -  2) 

+ fo,~. y . o _  ~ ~., r  I xo_ ~)) 
< "." < 21~ p t ~  
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Thus from (4.3)-(4.5), (4.7), and (4.8) it follows that 

sup f~3dX~ Kjl/6(Xn ] x)~< (n')'/2yntcf(t)exp{ t/~-3-----~l + In &o 0 } 
x ~ N  3 

/~l = 2 ' K 2 ~ - - -  2%xp t - i f -  , K 3 = 21~ t--~-- +tlAq, lo , 

21 lg~- exp { t T  ) / 3  - -  1 

Using the inequality 

4 ] 1/2 

E II I z) < 
(hi} . . .  {n4) i=1 

4 
E H Kjl/6(X{nj}l x) 

(nl} . . .  {n4} j=l 

taking into account (3.9), (4.1), (4.9) and making trivial computations we 
derive the basic estimate 

where 

sup (" dX~ot(XmlY2) < n!exp((m + n)K(t)} 
xj ~ R 3 "Aq3" 

2K(t)= fi~o + 2Bt + 2y2exp{ fl]q~lo + 2tHAdpl[o)(~lKJ(t)) 

+ ~ + In 4r 0 
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